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Abstract—Post-click conversion rate (CVR) estimation is a
fundamental task in developing effective recommender systems,
yet it faces challenges from data sparsity and sample selection
bias. To handle both challenges, the entire space multitask models
are employed to decompose the user behavior track into a
sequence of exposure → click → conversion, constructing surro-
gate learning tasks for CVR estimation. However, these methods
suffer from two significant defects: (1) intrinsic estimation bias
(IEB), where the CVR estimates are higher than the actual
values; (2) false independence prior (FIP), where the causal
relationship between clicks and subsequent conversions is poten-
tially overlooked. To overcome these limitations, we develop a
model-agnostic framework, namely Entire Space Counterfactual
Multitask Model (ESCM2), which incorporates a counterfactual
risk minimizer within the entire space multitask framework to
regularize CVR estimation. Experiments conducted on large-
scale industrial recommendation datasets and an online industrial
recommendation service demonstrate that ESCM2 effectively
mitigates IEB and FIP defects and substantially enhances rec-
ommendation performance.

Index Terms—Debiased recommendation, multitask learning,
conversion rate estimation.

I. INTRODUCTION

RECOMMENDATION systems play an essential role in
customizing content delivery across various industries

such as e-commerce [1], advertising [2], and social media
[3], serving as a cornerstone in information management and
dissemination [4], [5]. They typically operate through a two-
phase pipeline, in Fig. 1, involving an offline phase and an
online phase. In the offline phase, user profiles, item attributes,
and user-item interactions are extracted from logs to train a
ranking model. In the online phase, this model ranks candidate
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Fig. 1. Overview of a two-stage industrial recommender, which involves the
offline and online phases.

items based on criteria of interest such as click-through rate
(CTR), post-click conversion rate (CVR), and click-through
and conversion rate (CTCVR), and exposes top items to users
to meet their preferences. The model is continuously refined
based on real-time user feedback [1].

User behavior in recommendation systems often follows
a trajectory of exposure → click → conversion [1]. In this
context, CTR, CVR, and CTCVR respectively quantify the
transition probabilities from exposure to click, click to con-
version, and exposure to conversion. Advances in feature
interaction and deep learning have established CTR estimation
as a good practice. However, click-through feedback is often
interfered by unexpected factors such as clickbait, which
distorts genuine user preferences [6]. In contrast, CVR, which
indicates post-click user behavior, offers a more accurate
reflection of user preferences, attracting focused attention
within the recommendation community [7], [8], [9].

A naı̈ve yet common approach [10] to obtaining CVR
estimators is to train models solely with samples where
click happens. Where conversion labels are fully observable
[10]. This naı̈ve approach introduces two major problems:
sample selection bias and data sparsity. Sample selection bias
arises because the training dataset consists only of clicked
samples, whereas the inference needs to consider all exposures
[7]. Since samples with lower CVR are more likely to be
excluded from the click space [7], [11], training data is
missing not at random [10], which leads to a distribution
shift between the training and inference spaces [12]. Data
sparsity arises due to low click-through rates (e.g., 4% in the
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Ali-CPP dataset and 3.8% in our industrial dataset), which
restricts the data availability for training CVR estimators [1].
These two problems undermine the reliability of recommen-
dation systems by hampering their generalization to unseen
samples.

To handle the challenge of data sparsity and sample selec-
tion bias, the entire space multitask model (ESMM) [1] avoids
training CVR estimator directly by employing a multitask
approach that simultaneously optimizes CTCVR and CTR
objectives [1]. Since training of both CTCVR and CTR objec-
tives can utilize all exposure samples, this strategy alleviates
data sparsity and enhances performance in practice [13].
However, its reliability in CVR estimation has been questioned
due to the lack of unbiasedness guarantee [7] and overly
simplistic dependency assumptions. In this study, we formalize
these concerns as two defects of ESMM:

• Intrinsic Estimation Bias (IEB): the CVR estimates are
biased from true values.

• False Independence Prior (FIP): the CTR and CVR
estimates are susceptible to inappropriate assumptions of
conditional independence, ignoring the causal relationship
from click to conversion.

To address these defects, we propose the Entire Space
Counterfactual Multitask Model (ESCM2), a model-agnostic
framework that incorporates counterfactual regularizers for
CVR estimation. Both theoretical and empirical evalua-
tions demonstrate that our regularizers effectively mitigate
the IEB and FIP defects. Our main contributions are as
follows:

• We identify IEB and FIP as critical defects in ESMM,
with empirical results and theoretical analysis.

• We develop ESCM2, integrating counterfactual regulariz-
ers within ESMM to enhance performance. We provide
theoretical justifications and empirical validations demon-
strating its effectiveness in mitigating IEB and FIP.

• We conduct extensive evaluations using industrial recom-
mendation datasets to validate the efficacy of ESCM2,
we implement ESCM2 on our online recommenda-
tion platform, where it achieves substantial profit
increases.1

The remaining sections are structured as follows: Section II
provides preliminaries for understanding the technical details
in this work; Section III formulates the IEB and FIP defects
with ESMM; Section IV introduces the ESCM2 framework
for training recommendation models, which enhances ESMM
by incorporating the proposed counterfactual regularizers to
handle the IEB and FIP defects; Section V presents real-
world case studies to demonstrate the efficacy of ESCM2;
Section VI provides a brief overview of related works;
Section VII summarizes the conclusions and outlines open
questions.

1Building on our conference work [8], we detail the statistical properties,
showing that both IPS and DR regularizers effectively handle IEB and FIP.
We also demonstrate that IPS is a specialized importance sampling method.

II. PRELIMINARIES

A. Notations

In this paper, uppercase letters, e.g., O, represent random
variables; lowercase letters, e.g., o, represent the associated
specific values; calligraphic letters such as O denote sample
spaces; P(·), E(·), V(·) represent probability distribution, expec-
tation and variance, respectively.

B. Problem Statement

Denote U = {u1, u2, . . . , um} and I = {i1, i2, . . . , in} as the
respective sets of users and items in the exposure space.
Let D = U × I be the set of user-item intersections in the
exposure space. Let O ∈ {0, 1}m×n be the click indicators
where ou,i ∈ {0, 1} indicates whether the user u clicks the item
i; R ∈ {0, 1}m×n be the conversion labels where ru,i ∈ {0, 1}
indicates whether the user u purchases the item i.

If all entries ru,i ∈ R are observable, the ideal learning
objective for constructing CVR estimator is expressed as

P := E(u,i)∈D
�
δ
�
ru,i, r̂u,i

��
, (1)

where r̂u,i denotes the estimate of ru,i, δ measures the esti-
mation error and can be specified as any classification loss
function, δ(ru,i, r̂u,i) is the estimation error of CVR for a
specific user and item. Following existing works [1], [7], we
utilize binary cross-entropy as the loss measure:

εu,i : = δ
�
ru,i, r̂u,i.

�
= −ru,i log r̂u,i − (1 − ru,i) log(1 − r̂u,i), (2)

where we abbreviate the CVR estimation error δ(ru,i, r̂u,i) as
εu,i. However, the ideal objective (1) is incomputable since
ru,i is unobservable for samples outside the click space O. A
naive yet common shortcut is to estimate the learning objective
using clicked samples in O:

Lnaive := E(u,i)∈O(εu,i) =
1
|O|

X
(u,i)∈D

(ou,iεu,i), (3)

where |O| =
P

(u,i)∈D(ou,i). Nonetheless, it has been shown that
(3) is a biased estimation of the ideal objective [10], [14] due
to selection bias, i.e.,EO[Lnaive] , P .

C. Entire Space Multitask Model Approach

The entire space multitask model (ESMM) [1] is prevalent
in recommendation scenarios where CVR estimation plays
critical roles. To bypass data sparsity and sample selection
bias in training CVR estimators, ESMM avoids direct training
of the CVR estimator. Specifically, according to the sequential
user behavior track in Fig. 2, CVR can be represented as the
quotient of CTCVR and CTR:

P(ru,i = 1 | ou,i = 1)„ ƒ‚ …
CVR

=

CTCVR‚ …„ ƒ
P(ru,i = 1, ou,i = 1)
P(ou,i = 1)„ ƒ‚ …

CTR

.

On this basis, ESMM constructs two predictive arms to esti-
mate respective CTR and CVR as ôu,i and r̂u,i, and multiplies
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Fig. 2. Overview of the CVR estimation task in recommendation systems,
wherein online inference is executed on all exposed samples, while training
is exclusively carried out on clicked samples, leading to data sparsity and
sample selection bias.

them to acquire the estimate of CTCVR. During training,
ESMM minimizes the empirical risk for CTR and CTCVR
estimations as follows:

LCTR := E(u,i)∈D
�
δ
�
ou,i, ôu,i

��
LCTCVR := E(u,i)∈D

�
δ
�
ou,i ∗ ru,i, ôu,i ∗ r̂u,i

��
. (4)

In the inference phase, the output from the CVR arm provides
the CVR estimates. Since both CTCVR and CTR objec-
tives can utilize all exposure samples, ESMM alleviates data
sparsity and enhances performance in practice [13]. More-
over, ESMM seemingly circumvents sample selection bias by
avoiding direct training of the CVR estimator. However, as
elaborated in Section III-A, it remains vulnerable to selection
bias, formalized as the IEB defect in this work. To adequately
handle the sample selection bias, a regularization term tailored
for CVR estimation seems imperative, aiming to estimate the
unbiased learning objective of CVR estimator P with biased
click data (where conversion labels are available).

D. Causal Recommendation Approach

To estimate the ideal learning objective of CVR estimator,
causal inference techniques have received special attention
by the recommendation community [15], [16]. The core of
these methods is to weight the samples in the click space to
approximate the sample distribution in the exposure space. A
prominent technique is the inverse propensity score (IPS) [10],
which weights CVR estimation errors εu,i of clicked samples
using the inverse propensity score:

LIPS := E(u,i)∈D

�
ou,iεu,i

qu,i

�
, (5)

where the propensity score is specified as CTR: qu,i = P(ou,i =

1). Notably, LIPS is an unbiased estimator of the ideal learning
objective in (1), i.e.,EO(LIPS) = P , when the propensity
estimate is accurate.

However, the IPS method can exhibit high variance, par-
ticularly in sparse data scenarios like CVR estimation, where
propensities are often extremely small. To address this, the
doubly robust (DR) estimator [14] incorporates an error impu-
tation technique. It constructs an imputation model ε̂u,i to
approximate CVR estimation errors in D, and refines the
imputation with êu,i = εu,i − ε̂u,i in O:

LDR := E(u,i)∈D

�
ε̂u,i +

ou,iêu,i

qu,i

�
(6)

Fig. 3. Causal graphs where X, R, O, C denote the user-item intersection,
conversion, click and click & conversion, respectively. Hollow and shaded
nodes indicate latent and observed variables, respectively. The blue circle in
(c) represents intervention, blocking the backdoor path X → O.

This formulation ensures unbiasedness as long as either the
imputed error ε̂u,i or the CTR estimate ôu,i is accurate, hence
the term double robustness. The IPS and DR estimators offer
an unbiased estimation of P with click data, free from the
selection bias introduced by the non-randomness of user clicks.

III. ANALYSIS OF ENTIRE SPACE MULTITASK MODEL

A. Intrinsic Estimation Bias

In this section, we delve into the IEB defect with ESMM,
where the average CVR estimates exceed the actual values.
Previous studies have empirically demonstrated ESMM’s sus-
ceptibility to this bias [7]. Nonetheless, a formal justification of
this defect has not yet been established. We define this problem
formally as the IEB problem and establish its presence under
mild assumptions in Theorem 1.

Theorem 1 (Existence of IEB): Suppose O, R, and C are
the random variables for click, post-click conversion, and
click & conversion respectively. For a specific user-item pair
(u, i), let ou,i, ru,i, and cu,i denote the actual values; ôu,i,
r̂u,i, and ĉu,i denote the estimated values. The expectation of
ESMM’s CVR estimates across all exposures exceeds the true
CVR:

BiasESMM := ED
�
R̂
�
− ED [R] > 0, (7)

under the assumption that conversion is more likely to take
place for samples within the click space [10]:

EO [R] > ED [R] .

The existence of IEB highlights that sample selection bias
cannot be effectively addressed solely by decomposing tasks
within the ESMM framework. Instead, it necessitates devel-
oping an unbiased estimation approach for the ideal CVR
learning objective and directly optimizing it.

B. False Independence Prior

To estimate CTCVR, ESMM multiplies the outputs of its
CTR and CVR arms:

P(ou,i = 1, ru,i = 1) = P(ou,i = 1) ∗ P(ru,i = 1 | ou,i = 1),

where the CVR estimate is click-dependent, i.e., conver-
sion only occurs after the click, establishing a causal link
O → R in the data generation process. However, ESMM’s
learning objective (4) does not explicitly capture this causal
dependency, as indicated by the absent arrow O → R in
Fig. 3 (a). It poses the risk that ESMM models CVR as
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P(ru,i = 1) following Fig. 3 (a), as opposed to the expected
P(ru,i = 1 | ou,i = 1) in (III-B). This risk is formulated as
false independence prior, as it confuses the targeted P(ru,i =

1 | ou,i = 1) in (III-B) with the unexpected P(ru,i = 1),
thereby falsely introducing independent prior in CTCVR
estimation.

The naı̈ve approach in (3) trains the CVR model within the
click space, thereby explicitly incorporating the dependency
O → R as depicted in Fig. 3 (b).2 However, the backdoor
path X → O introduces sample selection bias [1], [7]. From
a causality perspective, the key to solving FIP without intro-
ducing backdoor path is defining CVR as a causal estimand:

P(ru,i = 1 | do(ou,i = 1)), (8)

where “do” represents the do-calculus [19], truncating the
backdoor path X → O as shown in Fig. 3. For clicked samples,
the causal estimand (8) aligns with the standard CVR defini-
tion, but for unclicked samples, it models the counterfactual
problem: What would be the likelihood of conversion if the
user had clicked the item?. Based on this formulation, the
CTCVR can be redefined as:

P
�
ou,i =1, ru,i =1

�
=P

�
ou,i =1

�
∗P
�
ru,i =1 | do

�
ou,i =1

��
,

which addresses both FIP and selection bias defects effectively.

IV. METHODOLOGY

In this section, we propose ESCM2 to tackle the afore-
mentioned IEB and FIP defects with ESMM. Section IV-A
describes the implementations and properties of the proposed
counterfactual regularizers; Section IV-B further demonstrates
how the proposed regularizers effectively handle the IEB and
FIP defects. Section IV-C develops ESCM2 by enhancing
the ESMM framework with the counterfactual regularizers,
detailing the model architecture and learning objectives.

A. Counterfactual Risk Regularizers

In this section, we contextualize the implementation of two
counterfactual risk regularizers: the IPS regularizer and the DR
regularizer, elucidating their statistical properties. Given that
post-click conversion labels are unavailable for non-clicked
samples, a naı̈ve approach involves calculating the CVR learn-
ing objective based on the estimation errors εu,i from clicked
samples. However, this method is prone to sample selection
bias, which causes a distribution shift between the training
space (click space) and the inference space (exposure space).
This shift hinders the CVR estimator’s ability to generalize
from training to inference, leading to suboptimal performance.

To counteract the distribution shift caused by sample selec-
tion bias, the IPS regularizer, as per (5), inversely weights each
clicked sample (with ou,i = 1) with propensity score qu,i:

RIPS = E(u,i)∈D

�
ou,iεu,i

qu,i

�
=

1
|D|

X
(u,i)∈D

ou,iεu,i

ôu,i
, (9)

where the propensity score, typically the actual CTR, is
unavailable; hence, the CTR estimate ôu,i is employed as a

2This causal graph aligns with Fig. 1 in [17] and [18].

proxy [7]. This re-weighting strategy corrects for the overrep-
resentation of data that are more prone to be clicked, aligning
the training data more closely with the exposure data, thereby
addressing the distribution shift between training and inference
space. In practice, it offers an approximation of the ideal CVR
learning objective—i.e., the expected value of εu,i over the
dataset D—using data from biased clicked samples.

The statistical properties of RIPS are encapsulated in Lemma
2. Specifically, given accurate CTR estimate (i.e.,ôu,i = qu,i),
RIPS is an unbiased estimator (i.e.,EO(RIPS) = P). However,
RIPS exhibits high variance when ôu,i values are small, which
makes the training process unstable.

Lemma 2: The bias and variance of RIPS are

BiasO (RIPS) =
1
|D|

ˇ̌̌̌
ˇ̌ X
(u,i)∈D

εu,i

�
qu,i

ôu,i
− 1
�ˇ̌̌̌ˇ̌ ,

VO (RIPS) =
1
|D|2

X
(u,i)∈D

qu,i
�
1 − qu,i

�
ô2

u,i

�
εu,i
�2
.

To mitigate the defect with IPS regularizer, the DR regu-
larizer extends RIPS by incorporating an imputation arm. This
arm aims to accurately impute the CVR estimation error (εu,i),
and its output, denoted as ε̂u,i, is subsequently corrected by
êu,i = εu,i − ε̂u,i. The imputation is performed in the exposure
space, whereas the correction is executed in the click space
where the actual εu,i values are available. We implement the
DR regularizer as follows:

Rerr
DR = E(u,i)∈D

�
ε̂u,i +

ou,iêu,i

qu,i

�
=

1
|D|

X
(u,i)∈D

ε̂u,i +
ou,iêu,i

ôu,i
, (10)

where êu,i is weighted with the propensity score qu,i to coun-
teract sample selection bias, ôu,i is a proxy for the propensity
score qu,i. This strategy imputes CVR estimation errors for
samples outside the click space and corrects this imputation
with êu,i. Although êu,i is only available in the click space, the
re-weighting corrects for the sample selection bias and offers
an equivalent expectation over the exposure space.

Similar to RIPS, Rerr
DR is unbiased to P . Moreover, according

to Lemma 3, RDR exhibits lower variance than RIPS when
0 < ε̂u,i < 2εu,i. Besides, RDR is doubly robust since it ensures
unbiasedness if either the propensity estimation or the error
imputation is accurate. The accuracy of ôu,i can be guaranteed
by an arbitrary well-trained CTR estimator, and the accuracy
of ε̂u,i can be assured by an auxiliary learning task:

Rimp
DR = E(u,i)∈D

"
ou,iê2

u,i

ôu,i

#
, (11)

and the final learning objective of the DR regularizer is

RDR = Rerr
DR +Rimp

DR . (12)

Lemma 3: The bias and variance of Rerr
DR are

Bias
�
Rerr

DR

�
=

1
|D|

ˇ̌̌̌
ˇ̌ X
(u,i)∈D

�
qu,i − ôu,i

� �εu,i − ε̂u,i
�

ôu,i

ˇ̌̌̌
ˇ̌ ,
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Fig. 4. The core architecture of ESCM2, where the ESCM2-IPS involves two arms for CTR and CVR estimation; the ESCM2-DR involves an additional arm
for imputation error estimation. The breaker indicates the path where the gradients are truncated. D and O denote respective exposure and click space.

VO
�
Rerr

DR

�
=

1
|D|2

X
(u,i)∈D

qu,i
�
1 − qu,i

� �ε̂u,i − εu,i
�2

ô2
u,i

.

B. Analytical Properties

In this section, we demonstrate that the IPS regularizer
(RIPS) can effectively handle the IEB and FIP defects with
ESMM. Specifically, Theorem 4 establishes that RIPS aligns
with the ideal learning objective P in (1), thereby handling
IEB. Concurrently, Theorem 5 establishes that RIPS promotes
the estimation of the CVR as P(ru,i = 1 | do(ou,i = 1)), as spec-
ified in (8), which explicitly models the causal link from click
to conversion, thereby mitigating FIP. These theoretical results
are also applicable to the DR regularizer RDR, with detailed
discussions provided in Theorems 7–8 in the Supplementary
material.

Theorem 4 (RIPS handles IEB): Given accurate propensity
score estimation, i.e.,ôu,i = qu,i, we have RIPS = P .

Theorem 5 (RIPS handles PIP): Suppose r̂IPS
u,i is the CVR

estimate that optimizes RIPS, P(ru,i = 1 | do(ou,i = 1)) is the
counterfactual conversion rate assuming the user clicked the
item. For all samples in the exposure space, RIPS encourages:

r̂IPS
u,i → P

�
ru,i = 1 | do

�
ou,i = 1

��
.

Corollary 6: RIPS is typically an importance sampling,
which computes the ideal expectation over the exposure space
D using samples from the click space O.

While Theorem 2 initially identified the unbiasedness of
RIPS, Theorem 4 presents a stronger unbiasedness, emphasiz-
ing a strong alignment with importance sampling principles
[20]. Building on this, Corollary 6 posits that RIPS typically
operates as a typical importance sampling. This interpreta-
tion suggests that the IPS estimator can be enhanced using
advanced importance sampling techniques [20], [21], [22], for
superior statistical properties.

C. Architecture and Learning Objective

While the proposed counterfactual regularizers effectively
approximate the ideal learning objective, they do not yield

a deployable recommendation model. To bridge this gap,
we introduce ESCM2, which employs the counterfactual risk
regularizers for training recommendation models. The detailed
steps are outlined in Algorithm 1 and are explained as follows.

First, we construct a multi-arm estimator f to estimate the
CTR, CVR and imputation error (step 1). The architecture
of f in Fig. 4 involves an embedding lookup table, a feature
extractor, and task-specific prediction arms. To mitigate data
sparsity, the embedding lookup table is shared across different
tasks, and f is implemented using a MMoE model [23].

Subsequently, we compute the CVR loss LCVR using the
counterfactual regularizers (steps 2–6). When the IPS regular-
izer is employed, LCVR corresponds to RIPS as defined in (9).
Crucially, we truncate the gradient of RIPS with respect to ôu,i

(step 2) because the CTR estimate acts only as a coefficient in
this context; optimizing it alongside the CVR objective would
degrade CTR estimation performance. Alternatively, if the DR
regularizer is used, LCVR corresponds to RDR as defined in
(12). For training stability, we stop the gradient flow from
ε̂u,i when calibrating it with true errors and from εu,i when
optimizing its estimation.

Finally, we define the learning objective of ESCM2, which
comprises three terms (steps 7-8):

LESCM2 := LCTR + λcLCVR + λgLCTCVR, (13)

where LCTR and LCTCVR represent the CTR and CTCVR
estimation risks defined in (4); LCVR is the counterfactual
CVR risk; λc and λg are weighting factors. This configuration
enables ESCM2 to leverage the ESMM structure to counteract
data sparsity while effectively handling the IEB and FIP
defects with ESMM using counterfactual regularizers.

V. EXPERIMENTS

In this section, we conduct experiments to investigate the
research questions as follows:

RQ1: How does ESCM2 perform compared to the prevalent
CVR and CTCVR estimators in offline and online scenarios?

RQ2: Does ESMM suffer from the intrinsic estimation bias
on CVR estimation? Does ESCM2 effectively reduce the bias?
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Algorithm 1 The Computational Procedure for ESCM2

Input: (u, i) ∈ D: the user-item pairs in the exposure space;
ou,i: the click label in the exposure space; ru,i: the conversion
label in the click space.
Parameter: λc: the weight of the counterfactual risk; λg: the
weight of the global risk.
Output: LESCM2 : the learning objective of ESCM2.

1: ôu,i, r̂u,i, ε̂u,i ← f (u, i).
2: õu,i ← StopGradient(ôu,i).
3: if model is ESCM2-IPS then
4: Calculate LCVR as RIPS in Eq.(9).
5: else if model is ESCM2-DR then
6: Calculate LCVR as Rerr

DR +Rimp
DR in Eq.(12).

7: end if
8: Calculate LCTR and LCTCVR in Eq.(4).
9: Calculate LESCM2 in Eq.(13).

TABLE I
DATASET DESCRIPTION

RQ3: Does ESMM suffer from false independence prior in
CTCVR estimation? Does ESCM2 mitigate this problem?

RQ4: How to tune the weights of learning objectives? Is
the performance of ESCM2 sensitive to it?

A. Setup

1) Dataset: Experiments are conducted using two datasets,
in Table I. The Industry dataset is constructed using our
industrial recommendation logs over 90 days, segmented
chronologically into training, validation, and test sets. Negative
samples are downsampled in the training phase to maintain
an approximate exposure:click:conversion ratio of 100:10:1.
The Ali-CCP dataset is incorporated for reproducibility.3 Only
single-valued categorical fields are used following Xi et al.
[24], and 10% of the training set is reserved for validation.

2) Baselines: Given that Multi-Task Learning (MTL) sig-
nificantly enhances the performance of recommender systems
[7], single-task CVR estimation approaches [10], [14] are
excluded from our baselines to provide a fair comparison. We
commence with three prevalent methods that co-train CTR and
CVR estimators and share embeddings between them:
• Naı̈ve4 [23] optimizes the CTR estimator in the exposure

space and the CVR estimator in the click space using the
biased approach described in (3).

• MTL-IMP [1] extends Naı̈ve by including unclicked
samples as negative samples to train the CVR estimator.

• ESMM4 [1] employs a multitask approach to optimize
two independent learning objectives for CTCVR and CTR
[1], and implicitly optimizes the CVR estimator.

3https://tianchi.aliyun.com/datalab/dataSet.html?dataId=408
4https://github.com/PaddlePaddle/PaddleRec/tree/master/models/multitask

Moreover, we incorporate debiased methods as follows:
• MTL-EIB [25] imputes the CVR estimation error for all

samples and corrects its imputation with clicked samples
to achieve a theoretically unbiased CVR estimation.

• MTL-IPS5 and MTL-DR [7] integrates the IPS and DR
[10] into a multitask learning framework, respectively,
providing a theoretically unbiased CVR estimator.

3) Training Protocol: For all methods in comparison, the
multitask estimator is implemented as a standard MMoE
model [23], beginning with a shared embedding layer. The
embedding dimension is uniformly set to 5, with other model
settings consistent with standard MMoE. The learning rate
and weight decay are set to 1e−4 and 1e−3, respectively.
Other optimizer settings are consistent with Adam optimizer
[26]. Notably, due to the one-epoch saturation phenomenon
observed in industrial recommenders [27], where model per-
formance tends to degrade after more than one epoch of
training, each model is trained for a single epoch with batch
size 512. The weighting factors, λg and λc, are determined
based on the outcomes of a hyperparameter study presented
in Section V-F, with values set to 1 and 0.1. All experiments
are conducted on K8S clusters in Ant Group with Intel Xeon
Platinum CPUs.

4) Evaluation Protocol: We mainly use the area under the
receiver operating characteristic curve (AUC) metric to assess
the ranking performance of the models. While AUC is a
robust measure for evaluating the average ranking performance
across all possible thresholds, it does not provide detailed
insights into performance at a specific threshold. Therefore, we
supply the KS, recall and F1 metrics at the best thresholds.
Performance is evaluated every 1 thousand iterations on the
validation dataset, where the model with the highest AUC is
selected for further evaluation on the test dataset.

B. Overall Performance

1) Performance Evaluation: We compare ESCM2 against
baselines for CVR estimation in Table II. Key observations
are summarized as follows:
• Debiased baselines generally outperform biased methods.

For example, MTL-IPS attains the highest AUC and F1
scores, improving ESMM’s AUC by 0.39% and KS by
1.04%. This highlights the potential of integrating unbi-
ased estimators to improve ESMM’s CVR estimation.

• ESCM2 significantly enhances performance beyond the
best baseline models, attributed to its effective mitigation
of the IEB and FIP defects with ESMM, and the benefits
of ESMM structure to address data sparsity.

In industry, CTCVR is a more prevalent metric as it
encapsulates both clicks and conversions. Notable findings of
CTCVR estimation in Table II, are summarized below:
• ESMM demonstrates competitive CTCVR performance,

achieving advanced recall and F1 scores on the Ali-CCP
dataset and leading recall and AUC scores on the industry
dataset. This success is attributed to the inclusion of
CTCVR estimation in ESMM’s learning objectives.

5https://github.com/DongHande/AutoDebias/tree/main/baselines
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TABLE II
OVERALL PERFORMANCE COMPARISON OF CVR AND CTCVR ESTIMATION (MEAN±STD)

TABLE III
ONLINE A/B TEST RESULTS IN 3 SCENARIOS

TABLE IV

COMPREHENSIVE ONLINE A/B TEST RESULTS IN SCENARIO 1

• ESCM2 outperforms all competitors in CTCVR estima-
tion, albeit with a smaller margin compared to CVR
estimation. The superiority primarily stems from two
factors: (1) incorporating CTCVR learning objective
improves the estimation of CTCVR. Secondly, mitigating
the IEB and FIP defects through counterfactual regu-
larizers offers more accurate CVR estimate and thereby
facilitating CTCVR estimation.

C. Online A/B Test

To further demonstrate the advantage of ESCM2 over
ESMM, online experiments are conducted on the indus-
trial recommendation systems in Alipay. We first implement
ESMM and ESCM26 using our C++ based machine learning
engine and open data processing service. Then, unique visitors
(UV) are assigned to either ESMM or ESCM2, and perfor-
mance is compared using four metrics: UV-CVR, UV-CTCVR,
order quantity (# Order) and total premium (# Premium).
Experiments across three large-scale scenarios, summarized
in Table III, yielded the following results:
• Scenario 1. This scenario is the insurance recommen-

dation from Alipay. Over six days with 3.1M page

views (PVs) and 2.2M UVs, ESCM2 increased the total
premium by 10.85%, order quantity by 2.84% and UV-
CVR by 5.64%. Daily comparisons are performed in
Table IV, where ESCM2 performs best in most metrics.

• Scenario 2. This scenario is a renovation of the scenario
above, where ESCM2 boosted the total premium by
3.88%, order quantity by 4.26%, UV-CVR by 0.43%, and
UV-CTCVR by 1.75%.

• Scenario 3. The third scenario is the Wufu campaign
in Alipay, where ESCM2 achieved a 40.55% increase in
order quantity and a 12.69% rise in premium.

D. Additional Study on Intrinsic Estimation Bias

In this section, we examine the IEB defect in ESMM
and assess the effectiveness of ESCM2 in addressing it. We
compare the average CVR labels (r̄) with the model estimates
(r̃) as shown in Table V. Since conversion labels are only
available within the click space, r̄ serves as an upper bound
for the actual average CVR across the entire exposure space.
Thus, any deviation from r̄ provides a lower-bound estimate
of the CVR estimation bias.

Table V indicates that ESMM consistently overestimates
CVR values, validating the theoretical result in Theorem 1
and confirming the presence of IEB. Conversely, ESCM2

significantly mitigates CVR estimation bias. On the industry
dataset, ESCM2-IPS achieves a bias reduction of 48.95%
and 28.55% in the training and test sets, respectively, while
ESCM2-DR achieves reductions of 58.58% and 36.81%.Sim-
ilar improvements are observed on the Ali-CCP dataset, with
ESCM2-IPS and ESCM2-DR reducing bias by comparable per-
centages, highlighting the general effectiveness of ESCM2 in
addressing IEB. This efficacy is attributed to the counterfactual
regularizers in ESCM2, which ensure unbiased CVR estimates,
as demonstrated in Theorem 4

E. Additional Study on False Independence Prior

In this analysis, we investigate the FIP defect in ESMM and
assess how ESCM2 addresses it. FIP arises since the model

6We use the IPS regularizer for advantageous training efficiency.
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TABLE V

OVERVIEW OF THE IEB DEFECT WITH ESMM AND THE EFFICACY OF ESCM2 TO MITIGATE IEB

Fig. 5. Comparative study of the causal link strength O→ R with and without
counterfactual regularizers.

fails to capture the causal link between clicks and conversions,
as illustrated by the missing O → R in Fig. 3 (a). To
quantify FIP, we measure the causation strength from clicks to
conversions using propensity score matching, which eliminates
the confounding effect of X in Fig. 3, CVR and CTR estimates
are treated as outcomes and propensities, respectively, to study
the causal link strength. Following [28], we divide samples
into clicked and unclicked groups and pair clicked samples
with unclicked ones that have the most similar propensity
scores. The causal link strength O→ R is estimated using the
causal risk ratio (CRR) [29], where a CRR close to 1 indicates
weak causation. Thus, the causation strength is quantified as
|CRR − 1|.

Fig. 5 shows that ESMM exhibits minimal CRR, approx-
imately 0.05 and 0.001 on the industry and Ali-CCP
datasets, respectively, confirming the presence of the FIP
defect. In contrast, ESCM2 significantly increases causation
strength, with ESCM2-IPS achieving over 0.12 and 0.002
on the respective datasets. This improvement is attributed
to ESCM2’s counterfactual regularizers, which estimate CVR
as P(ru,i = 1 | do(ou,i = 1)) according to Theorem 5, explicitly
accounting for the causal effect of clicks on conversions and
mitigating the FIP defect.

F. Hyper-Parameter Tuning and Ablation Study

Two crucial hyperparameters of ESCM2 are the weighting
factors (i.e.,λc and λg) in the learning objective (13). In this
section, they are tuned within the range [0, 3] to investigate the
impact of causal regularization and global risk minimization
on the performance of CVR and CTCVR estimation.
• The weighting factor λc is investigated in Fig. 6.

Evidently, increasing λc consistently benefits CVR esti-
mation, which showcases the effectiveness of causal
regularization. The AUC of ESCM2-DR, for instance,

Fig. 6. Performance of CVR (a-b) and CTCVR estimation (c-d) with varying
counterfactual risk weight λc.

grows from 0.755 at λc = 0 where the causal regu-
larization is not applied, to around 0.785 at λc = 1.5.
Additionally, causal regularization also benefits CTCVR
estimates. For example, the AUC of ESCM2-IPS boosts
from 0.817 at λc = 0 to 0.821 at λc = 0.1. Nevertheless,
the overemphasis on CVR risk has a negative impact
on CTCVR estimation. For example, a drop in AUC
by 0.012 is observed for ESCM2-IPS from λc = 0.1 to
λc = 3.0. This phenomenon is attributed to the seesaw
effect in multitask learning [30], i.e., overemphasis on
the CVR risk misleads the optimizer to ignore the CTR
risk, reducing CTR and CTCVR estimation performance.
Therefore, we suggest tuning λc within the range [0, 0.1].

• The weighting factor λg is studied in Fig. 7. Overall,
increasing λg within the range [0, 3] is beneficial for
both CTR and CTCVR estimation. In the CVR estimation
task, for instance, increasing λg from 0 to 2.5, the
KS of ESCM2-DR climbs from 0.385 to about 0.434;
the AUC of ESCM2-IPS grows by 0.023, significantly.
These observations verify the effectiveness of entire space
multitask modelling paradigm, exploiting the sequential
user behavior track as per Fig. 2.

VI. RELATED WORK

Post-click conversion rate (CVR) estimation is a crucial task
in recommendation, which aims to predict the likelihood of a
user completing a transaction after clicking [1], [31], [32].
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Fig. 7. Performance of CVR (a-b) and CTCVR estimation (c-d) with varying
CTCVR risk weight λg.

Accurate CVR estimation not only helps to drive transactions,
but also improves traffic resource allocation, resulting in
increased revenue. However, CVR estimation faces significant
challenges, namely sample selection bias and data sparsity [1],
[7]. To address these challenges, existing methods generally
fall into two paradigms: the entire space multitask paradigm
and the causal recommendation paradigm.

A. Entire Space Multitask Paradigm

The entire space multitask paradigm, pioneered with ESMM
[1], innovatively avoids training CVR estimator directly.
Instead, it employs a multitask approach to optimize two
independent learning objectives for CTCVR and CTR [1].
This strategy leverages all exposure samples for training both
CTCVR and CTR objectives, thereby alleviating data sparsity
and enhancing practical performance. On the basis of ESMM,
a line of work initiated in [13] advocates for including addi-
tional conversion-related actions, such as adding to favorites
and cart. These actions enrich the user behavior track and
introduce auxiliary tasks, providing more granular supervision
labels to further mitigate data sparsity [33], [34], [35]. Sub-
sequently, graph models have been explored as alternatives to
the Markov chain approach for capturing increasingly complex
interactions among user behaviors [36], [37]. In another line
of work, arious plug-ins, such as language models [38] and
the delayed feedback calibrator [39], have been integrated into
the training paradigm to improve recommendation quality.

This paradigm is particularly prevalent in industrial rec-
ommendation systems where accurate CVR estimation is
crucial. The data sparsity issue is effectively mitigated by
this paradigm through the incorporation of auxiliary tasks
with abundant data; however, sample selection bias persists
due to the absence of unbiasedness guarantee [7] and overly
simplistic dependency assumptions. These concerns are for-
mulated as two defects with ESMM in this study, namely
the intrinsic estimation bias and the false independence prior,
which renders ESMM’s CVR estimation biased and leaves
room for further improvement.

B. Causal Recommendation Paradigm

The causal recommendation paradigm, initiated with [10],
estimates the ideal learning objective by adjusting the biased
dataset using propensity scores. On this basis, a line of work
focuses on enhancing the estimation of propensity scores,
which is crucial for ensuring the unbiasedness of the adjusted
learning objective [16]. Early methods estimated the propen-
sity score based on heuristic item popularity [40], [41], and
later progressed to parametric models like logistic regression
[7], [42]. Subsequent advancements have incorporated vari-
ous learning techniques, such as feature selection [43], joint
optimization [7], [44], alternative training [45] and kernel bal-
ancing [46], for enhanced identifiability and estimation quality.
Another line of works advocates for more complex causal
adjustment approaches to reduce estimation variance [47],
improve training stability [16], resist noisy labels [48] and
model mis-specification [49]. Some recent works innovatively
incorporate a small subset of unbiased data during training [9],
[50], [51], which effectively addresses missing confounders
while minimizing additional data collection efforts.

While this paradigm is widely acknowledged in academic
research, its application in industrial recommendation sce-
narios remains limited. Although the sample selection bias
is effectively addressed through causal adjustment with solid
theoretical guarantees; the training only involves treated (i.e.,
clicked) samples which are sparse in real-world applications.
As a result, the issue of data sparsity is ignored by this
paradigm, which severely compromises the performance of
CVR estimators in industrial practice.

In conclusion, the entire space multitask paradigm and
the causal recommendation excel handling data sparsity and
sample selection bias, respectively, but fall short of tackling
both challenges concurrently. We innovatively synthesize the
two paradigms and construct ESCM2, which incorporates a
counterfactual risk regularizer within the ESMM framework
to regularize CVR estimation. It leverages the advantage of
ESMM for mitigating data sparsity, while addressing sample
selection bias by estimating unbiased CVR through counter-
factual regularizers.

VII. CONCLUSION

This study demonstrates that the ESMM method, while
effective, secretly suffers from the IEB and PIP issues. To
address these challenges, the research introduces a counter-
factual risk regularizer within the ESMM framework. This
integration not only preserves ESMM’s ability to mitigate data
sparsity but also effectively addresses sample selection bias
through the use of counterfactual regularization techniques.
Empirical evidence from real-world experiments validates the
efficacy of the proposed method, demonstrating its capability
to alleviate both the IEB and PIP issues, thereby enhancing the
CVR estimation performance relative to the original ESMM
approach.

Limitation & future works. In this work, we focus on the
sequential user behavior track illustrated in Fig. 2. However,
in industrial scenarios, there are diverse user behaviors whose
dependencies excess the expressive capabilities of Markov
chains. Although some studies [13], [36] extend ESMM to
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describe such complex dependencies via decomposition, they
also inevitably suffer from both IEB and FIP defects. Lever-
aging the counterfactual regularization techniques in ESCM2,
these methods could be further enhanced to effectively address
both IEB and FIP defects.
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